Bayes' Theorem

Example

- Three jars contain colored balls as described in the table below.
 - One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the 2nd jar?

Jar #	Red	White	Blue
1	3	4	1
2	1	2	3
3	4	3	2

Example

We will define the following events:
J₁ is the event that *first* jar is chosen
J₂ is the event that *second* jar is chosen
J₃ is the event that *third* jar is chosen *R* is the event that a *red* ball is selected

Example

- The events J_1 , J_2 , and J_3 mutually exclusive
 - □Why?

 You can't chose two different jars at the same time
 Because of this, our sample space has been divided or *partitioned* along these three events

Venn Diagram

Let's look at the Venn Diagram

Venn Diagram

All of the red balls are in the first, second, and third jar so their set overlaps all three sets of our partition

Finding Probabilities

- What are the probabilities for each of the events in our sample space?
- How do we find them?

$$P(A \cap B) = P(A \mid B)P(B)$$

Computing Probabilities $P(J_1 \cap R) = P(R \mid J_1)P(J_1) = \frac{3}{8} \cdot \frac{1}{3} = \frac{1}{8}$

Similar calculations show:

$$P(J_{2} \cap R) = P(R \mid J_{2})P(J_{2}) = \frac{1}{6} \cdot \frac{1}{3} = \frac{1}{18}$$
$$P(J_{3} \cap R) = P(R \mid J_{3})P(J_{3}) = \frac{4}{9} \cdot \frac{1}{3} = \frac{4}{27}$$

Venn Diagram

Updating our Venn Diagram with these probabilities:

Where are we going with this?

Our original problem was:

One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the 2nd jar?

In terms of the events we've defined we want:

$$P(J_2 | R) = \frac{P(J_2 \cap R)}{P(R)}$$

Finding our Probability

- We already know what the numerator portion is from our Venn Diagram
- What is the denominator portion?

$$P(J_2 | R) = \frac{P(J_2 \cap R)}{P(R)}$$
$$= \frac{P(J_2 \cap R)}{P(J_1 \cap R) + P(J_2 \cap R) + P(J_3 \cap R)}$$

Arithmetic!

Plugging in the appropriate values: $P(J_2 | R) = \frac{P(J_2 \cap R)}{P(J_1 \cap R) + P(J_2 \cap R) + P(J_3 \cap R)}$ $\frac{\left(\frac{1}{18}\right)}{\left(\frac{1}{8}\right) + \left(\frac{1}{18}\right) + \left(\frac{4}{27}\right)} = \frac{12}{71} \approx 0.17$

Another Example—Tree Diagrams

All tractors made by a company are produced on one of three assembly lines, named Red, White, and Blue. The chances that a tractor will not start when it rolls off of a line are 6%, 11%, and 8% for lines Red, White, and Blue, respectively. 48% of the company's tractors are made on the Red line and 31% are made on the Blue line. What fraction of the company's tractors do not start when they roll off of an assembly line?

Define Events

- Let R be the event that the tractor was made by the red company
- Let W be the event that the tractor was made by the white company
- Let B be the event that the tractor was made by the blue company
- Let *D* be the event that the tractor won't start

Extracting the Information

In terms of probabilities for the events we've defined, this what we know:

$$P(R) = 0.48$$

 $P(W) = 0.21$
 $P(B) = 0.31$
 $P(D | R) = 0.06$
 $P(D | W) = 0.11$
 $P(D | B) = 0.08$

What are we trying to find?

Our problem asked for us to find:
 The fraction of the company's tractors that do not start when rolled off the assembly line?
 In other words:

P(D)

Tree Diagram

Because there are three companies producing tractors we will divide or partition our sample space along those events only this time we'll be using a tree diagram

Tree Diagram

Follow the Branch?

There are three ways for a tractor to be defective:

- It was made by the Red Company
- □ It was made by the White Company
- □ It was made by the Blue Company

- To find all the defective ones, we need to know how many were:
 - □ Defective and made by the Red Company?
 - Defective and made by the White Company?
 - Defective and made by the Blue Company?

The Path Less Traveled?

In terms of probabilities, we want:

 $P(R \cap D)$ $P(W \cap D)$ $P(B \cap D)$

Computing Probabilities

- To find each of these probabilities we simply need to multiply the probabilities along each branch
- Doing this we find

 $P(R \cap D) = P(D \mid R)P(R)$ $P(W \cap D) = P(D \mid W)P(W)$ $P(B \cap D) = P(D \mid B)P(B)$

Putting It All Together

Because each of these events represents an instance where a tractor is defective to find the total probability that a tractor is defective, we simply add up all our probabilities:

$$P(D) = P(D | R)P(R) + P(D | W)P(W) + P(D | B)P(B)$$

Bonus Question:

What is the probability that a tractor came from the red company given that it was defective?

$$P(R \mid D) = \frac{P(R \cap D)}{P(D)}$$

I thought this was called Bayes' Theorem?

- Bayes' Theorem
- Suppose that B₁, B₂, B₃,..., B_n partition the outcomes of an experiment and that A is another event. For any number, *k*, with
 - $1 \le k \le n$, we have the formula:

$$P(B_k \mid A) = \frac{P(A \mid B_k) \cdot P(B_k)}{\sum_{i=1}^n P(A \mid B_i) \cdot P(B_i)}$$

In English Please?

What does Bayes' Formula helps to find?
Helps us to find:

 $P(B \mid A)$

By having already known:

 $P(A \mid B)$