Bayes' Theorem

Example

- Three jars contain colored balls as described in the table below.
\square One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the $2^{\text {nd }}$ jar?

Jar \#	Red	White	Blue
1	3	4	1
2	1	2	3
3	4	3	2

Example

- We will define the following events:
$\square J_{1}$ is the event that first jar is chosen
$\square J_{2}$ is the event that second jar is chosen
$\square J_{3}$ is the event that third jar is chosen
$\square R$ is the event that a red ball is selected

Example

- The events J_{1}, J_{2}, and J_{3} mutually exclusive \square Why?
- You can't chose two different jars at the same time
- Because of this, our sample space has been divided or partitioned along these three events

Venn Diagram

- Let's look at the Venn Diagram

Venn Diagram

- All of the red balls are in the first, second, and third jar so their set overlaps all three sets of our partition

Jar I $J_{1} \cap R^{C}$	Jar II Red Balls $J_{2} \cap R$ $J_{2} \cap R^{C}$	

Finding Probabilities

- What are the probabilities for each of the events in our sample space?
- How do we find them?

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Computing Probabilities

$$
P\left(J_{1} \cap R\right)=P\left(R \mid J_{1}\right) P\left(J_{J_{1}}\right)=\frac{3}{8} \cdot \frac{1}{3}=\frac{1}{8}
$$

- Similar calculations show:

$$
\begin{aligned}
& P\left(J_{2} \cap R\right)=P\left(R \mid J_{2}\right) P\left(J_{2}\right)=\frac{1}{6} \cdot \frac{1}{3}=\frac{1}{18} \\
& P\left(J_{3} \cap R\right)=P\left(R \mid J_{3}\right) P\left(J_{3}\right)=\frac{4}{9} \cdot \frac{1}{3}=\frac{4}{27}
\end{aligned}
$$

Venn Diagram

- Updating our Venn Diagram with these probabilities:

Where are we going with this?

- Our original problem was:
\square One jar is chosen at random and a ball is selected. If the ball is red, what is the probability that it came from the $2^{\text {nd }}$ jar?
- In terms of the events we've defined we want:

$$
P\left(J_{2} \mid R\right)=\frac{P\left(J_{2} \cap R\right)}{P(R)}
$$

Finding our Probability

- We already know what the numerator portion is from our Venn Diagram
- What is the denominator portion?

$$
P\left(J_{2} \mid R\right)=\frac{P\left(J_{2} \cap R\right)}{P(R)}
$$

$$
=\frac{P\left(J_{2} \cap R\right)}{P\left(J_{1} \cap R\right)+P\left(J_{2} \cap R\right)+P\left(J_{3} \cap R\right)}
$$

Arithmetic!

- Plugging in the appropriate values:

$$
\begin{aligned}
P\left(J_{2} \mid R\right) & =\frac{P\left(J_{2} \cap R\right)}{P\left(J_{1} \cap R\right)+P\left(J_{2} \cap R\right)+P\left(J_{3} \cap R\right)} \\
& =\frac{\left(\frac{1}{18}\right)}{\left(\frac{1}{8}\right)+\left(\frac{1}{18}\right)+\left(\frac{4}{27}\right)}=\frac{12}{71} \approx 0.17
\end{aligned}
$$

Another Example-Tree Diagrams

All tractors made by a company are produced on one of three assembly lines, named Red, White, and Blue. The chances that a tractor will not start when it rolls off of a line are 6%, 11%, and 8% for lines Red, White, and Blue, respectively. 48\% of the company's tractors are made on the Red line and 31% are made on the Blue line. What fraction of the company's tractors do not start when they roll off of an assembly line?

Define Events

- Let R be the event that the tractor was made by the red company
- Let W be the event that the tractor was made by the white company
- Let B be the event that the tractor was made by the blue company
- Let D be the event that the tractor won't start

Extracting the Information

- In terms of probabilities for the events we've defined, this what we know:

$$
\begin{aligned}
& P(R)=0.48 \\
& P(W)=0.21 \\
& P(B)=0.31 \\
& P(D \mid R)=0.06 \\
& P(D \mid W)=0.11 \\
& P(D \mid B)=0.08
\end{aligned}
$$

What are we trying to find?

- Our problem asked for us to find:
\square The fraction of the company's tractors that do not start when rolled off the assembly line?
\square In other words:

$$
P(D)
$$

Tree Diagram

- Because there are three companies producing tractors we will divide or partition our sample space along those events only this time we'll be using a tree diagram

Tree Diagram

Follow the Branch?

- There are three ways for a tractor to be defective:
\square It was made by the Red Company
\square It was made by the White Company
\square It was made by the Blue Company
- To find all the defective ones, we need to know how many were:
\square Defective and made by the Red Company?
\square Defective and made by the White Company?
\square Defective and made by the Blue Company?

The Path Less Traveled?

- In terms of probabilities, we want:

$$
\begin{aligned}
& P(R \cap D) \\
& P(W \cap D) \\
& P(B \cap D)
\end{aligned}
$$

Computing Probabilities

- To find each of these probabilities we simply need to multiply the probabilities along each branch
- Doing this we find

$$
\begin{aligned}
& P(R \cap D)=P(D \mid R) P(R) \\
& P(W \cap D)=P(D \mid W) P(W) \\
& P(B \cap D)=P(D \mid B) P(B)
\end{aligned}
$$

Putting It All Together

- Because each of these events represents an instance where a tractor is defective to find the total probability that a tractor is defective, we simply add up all our probabilities:

$$
P(D)=P(D \mid R) P(R)+P(D \mid W) P(W)+P(D \mid B) P(B)
$$

Bonus Question:

- What is the probability that a tractor came from the red company given that it was defective?

$$
P(R \mid D)=\frac{P(R \cap D)}{P(D)}
$$

I thought this was called Bayes' Theorem?

- Bayes' Theorem
- Suppose that $B_{1}, B_{2}, B_{3, \ldots}, B_{n}$ partition the outcomes of an experiment and that A is another event. For any number, k, with $1 \leq k \leq n$, we have the formula:

$$
P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) \cdot P\left(B_{k}\right)}{\sum_{i=1}^{n} P\left(A \mid B_{i}\right) \cdot P\left(B_{i}\right)}
$$

In English Please?

- What does Bayes' Formula helps to find?
\square Helps us to find:
$P(B \mid A)$
\square By having already known:

$$
P(A \mid B)
$$

